Publicación:
Computer vision techniques for detection of physiological status eyes drivers; [Detección del estado fisiológico de los ojos en conductores mediante técnicas de visión artificial]

dc.contributor.authorAle, Neisser Ale
dc.contributor.authorFabián, Junior
dc.date.accessioned2025-08-11T16:44:31Z
dc.date.issued2019
dc.description.abstractIn recent decades, the number of traffic accidents due to fatigue or drowsiness of the driver has caused significant human and material losses. At the same time, the sale in the vehicle fleet has been massified, which indicates that possibly in the following years, if the pertinent measures are not taken to detect fatigue, there will be an increase in automobile accidents. Therefore, in this research study, the development of a fatigue detection system in drivers that allows alerting about their status while driving using artificial vision and machine learning techniques is proposed. The techniques of these two fields of study are intercepted to generate supervised models with high performance when classifying the state of fatigue in drivers. In this study, a dataset of frontal images focusing on the physiological characteristics of the eyes was used; obtaining promising preliminary results in the detection of fatigue in real-time. © 2019, Universidad de Tarapaca. All rights reserved.
dc.identifier.doi10.4067/S0718-33052019000400564
dc.identifier.scopus2-s2.0-85078753574
dc.identifier.urihttps://cris.esan.edu.pe/handle/20.500.12640/820
dc.identifier.uuid866b4487-f61c-47ff-b5b1-0f24ccc3431b
dc.language.isoes
dc.publisherUniversidad de Tarapaca
dc.relation.citationissue4
dc.relation.ispartofIngeniare
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectArtificial vision
dc.subjectCEW dataset
dc.subjectFatigue detection
dc.subjectHOG descriptor
dc.subjectMachine learning
dc.titleComputer vision techniques for detection of physiological status eyes drivers; [Detección del estado fisiológico de los ojos en conductores mediante técnicas de visión artificial]
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dspace.entity.typePublication
oaire.citation.endPage572
oaire.citation.startPage564

Archivos

Colecciones