Publicación: Joint non-parametric estimation of mean and auto-covariances for Gaussian processes
dc.contributor.author | Tatyana Krivobokova | |
dc.contributor.author | Paulo Serra | |
dc.contributor.author | Francisco Rosales | |
dc.contributor.author | Karolina Klockmann | |
dc.date.accessioned | 2024-09-20T20:15:34Z | |
dc.date.available | 2024-09-20T20:15:34Z | |
dc.date.issued | 2022-09-30 | |
dc.description.abstract | Gaussian processes that can be decomposed into a smooth mean function and a stationary autocorrelated noise process are considered and a fully automatic nonparametric method to simultaneous estimation of mean and auto-covariance functions of such processes is developed. The proposed empirical Bayes approach is data-driven, numerically efficient, and allows for the construction of confidence sets for the mean function. Performance is demonstrated in simulations and real data analysis. The method is implemented in the R package eBsc. | |
dc.identifier.doi | https://doi.org/10.1016/j.csda.2022.107519 | |
dc.identifier.issn | 0167-9473 | |
dc.identifier.uri | https://cris.esan.edu.pe/handle/20.500.12640/376 | |
dc.relation.ispartof | Computational Statistics & Data Analysis | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Joint non-parametric estimation of mean and auto-covariances for Gaussian processes | |
dc.type | Artículo de revista | |
dspace.entity.type | Publication | |
oaire.citation.volume | 173 |