Publicación:
Joint non-parametric estimation of mean and auto-covariances for Gaussian processes

dc.contributor.authorTatyana Krivobokova
dc.contributor.authorPaulo Serra
dc.contributor.authorFrancisco Rosales
dc.contributor.authorKarolina Klockmann
dc.date.accessioned2024-09-20T20:15:34Z
dc.date.available2024-09-20T20:15:34Z
dc.date.issued2022-09-30
dc.description.abstractGaussian processes that can be decomposed into a smooth mean function and a stationary autocorrelated noise process are considered and a fully automatic nonparametric method to simultaneous estimation of mean and auto-covariance functions of such processes is developed. The proposed empirical Bayes approach is data-driven, numerically efficient, and allows for the construction of confidence sets for the mean function. Performance is demonstrated in simulations and real data analysis. The method is implemented in the R package eBsc.
dc.identifier.doihttps://doi.org/10.1016/j.csda.2022.107519
dc.identifier.issn0167-9473
dc.identifier.urihttps://cris.esan.edu.pe/handle/20.500.12640/376
dc.relation.ispartofComputational Statistics & Data Analysis
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.titleJoint non-parametric estimation of mean and auto-covariances for Gaussian processes
dc.typeArtículo de revista
dspace.entity.typePublication
oaire.citation.volume173

Archivos

Colecciones